Heat recovery from combustion Incinerator for Plastic Pyrolysis Process

  • Septian Hadi Susetyo
  • Abdu Fadli Assomadi
  • Joni Hermana
Keywords: Incinerator, Pyrolysis plastic, Heat recovery, Technology of waste treatment

Abstract

This study was aimed to examine the utilization of incenerator heat for pyrolysis process. This research used an integrated incinerator-pyrolysis reactor with laboratory scale. The pyrolysis reactor was located in the an incinerator chamber. The dimensions of the pyrolysis chamber was 15 cm x 15 cm x 25 cm, and the dimensions of the incinerator  chamber was 45 cm x 45 cm x 50 cm. Pyrolysis process used PP, PET and HDPE plastic, with the treatment of each type of plastic weighing 300 g. incinerator and pyrolysis chambers were equipped with type K thermocouple. The test parameters in this study were incinerator combustion temperatures, pyrolysis combustion temperature and pyrolysis product. The testing time was 120 minutes. The results of this study were incinerator combustion chamber temperatures fluctuating with the highest combustion chamber temperature was 739.4 0C and the highest temperature in the pyrolysis combustion chamber was 433.3 0C. The resulting pyrolysis products were oil, gas and char. The results of PP pyrolysis are 70.3% oil, 29.7% gas, and 0% char. PET pyrolysis results were 77.3% gas, 16% char and 6.7% oil.

References

Al-Salem, S. M., Antelava, A., Constantinou, A., Manos, G., & Dutta, A. (2017). A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). Journal of Environmental Management, 197, 177-198.

Al-Salem, S. M., Lettieri, P., & Baeyens, J. (2009). Recycling and recovery routes of plastic solid waste (PSW): A review. Waste management, 29(10), 2625-2643.

Andrady, A. L., & Neal, M. A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1977-1984.

Aprian, R. P., dan Munawar, A. (2012). Pengolahan Sampah Plastik menjadi Minyak Menggunakan Proses Pirolisis. Envirotek: Jurnal Ilmiah Teknik Lingkungan

Budiyantoro, C. (2010). Thermoplastik Dalam Industri. Teknika Media, Surakarta.

Das, S., & Pandey, S. (2007). Pyrolysis and catalytic cracking of municipal plastic waste for recovery of gasoline range hydrocarbons (Doctoral dissertation).

Erol, M., Haykiri-Acma, H., & Küçükbayrak, S. (2010). Calorific value estimation of biomass from their proximate analyses data. Renewable energy, 35(1), 170-173.

Ghasemi, M. K., & Yusuff, R. B. (2016). Advantages and Disadvantages of Healthcare Waste

Given, P. H., Weldon, D., & Zoeller, J. H. (1986). Calculation of calorific values of coals from ultimate analyses: theoretical basis and geochemical implications. Fuel, 65(6), 849-854.

Haykiri-Acma, H., Yaman, S., & Kucukbayrak, S. (2006). Effect of heating rate on the pyrolysis yields of rapeseed. Renewable Energy, 31(6), 803-810.

Lee, J., Hyun, I., & Lee, K. H. (2015). Utilization of heat from waste-incineration facility for heating large-scale horticultural facilities. Korean Journal of Air-Conditioning and Refrigeration Engineering, 27(8), 418-425.

Leslie, H. A., van der Meulen, M. D., Kleissen, F. M., & Vethaak, A. D. (2011). Microplastic litter in the Dutch marine environment: Providing facts and analysis for Dutch policymakers concerned with marine microplastic litter.

Lettieri, P., & Al-Salem, S. M. (2011, January). Thermochemical treatment of plastic solid waste. In Waste (pp. 233-242). Academic Press.

LI, W. C., Tse, H. F., & FOK, L. (2016). Plastic waste in the marine environment: A review of sources, occurrence and effects. Science of the Total Environment, 566, 333-349..

Makarichi, L., Jutidamrongphan, W., & Techato, K. A. (2018). The evolution of waste-to-energy incineration: A review. Renewable and Sustainable Energy Reviews, 91, 812-821.

Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., & Nizami, A. S. (2016). Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, 102, 822-838.

Panda, A.K. (2011). Studies On Process Optimization For Production Of Liquid Fuels From Waste Plastics, Thesis, Chemical Engineering Department National Institute of technology Rourkela.

Purwanti, A. (2008). Kinetika Reaksi Pirolisis Plastik Low Density Poliethylene (LDPE). Jurnal Teknologi IST AKPRIND, 1.

Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2016). A review on pyrolysis of plastic wastes. Energy conversion and management, 115, 308-326.

Statista, (2018). Global Plastic Production. Available from. https://www.statista.com/statistics/281126/global-plastics-production-share-of-various-countries-and-regions/ Access 30 January2019

Surono, U. B. (2013). Berbagai metode konversi sampah plastik menjadi bahan bakar minyak. Jurnal Teknik, 3(1), 32-40. Treatment and Disposal Alternatives: Malaysian Scenario. Polish Journal of Environmental Studies, 25(1).

Verma, R., Vinoda, K. S., Papireddy, M., & Gowda, A. N. S. (2016). Toxic pollutants from plastic waste-a review. Procedia Environmental Sciences, 35, 701-708.

Wahyudi, D., Wardana, I. N. G., & Hamidi, N. (2012). Pengaruh Kadar Karbondioksida (CO2) dan Nitrogen (N2) Pada Karakteristik Pembakaran Gas Metana. Rekayasa Mesin, 3(1), 241-248.

Yang, Z., Zhou, X., & Xu, L. (2015). Eco-efficiency optimization for municipal solid waste management. Journal of Cleaner Production, 104, 242-249.

Published
2020-04-06